Commutative Hopf-Galois Module Structure of Tame Extensions

Paul Truman

Keele University, UK

26th of May, 2016

Why study nonclassical HGMS of tame extensions?

- "Better" descriptions of rings of integers in tame Galois extensions of global fields: Martinet's tame quaternionic extensions of \mathbb{Q} .
- Descriptions of rings of integers in separable, but non-normal, tame extensions (local or global).
- Uniformity: No known example of a tame H-Galois separable extension L/K of local fields for which \mathfrak{O}_L is not free over \mathfrak{A}_H .
- Obvious candidate for the associated order: if $H = E[N]^G$ then $\mathfrak{O}_E[N]^G \subseteq \mathfrak{A}_H$, and there are many examples of equality.

Three theorems (in reverse order)

Theorem

Let L/K be a tame Galois extension of p-adic fields with group G, and let $H = L[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on the extension. Then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.

Three theorems (in reverse order)

• Recall that a separable extension L/K with Galois closure E/K is called Almost classically Galois if Gal(E/L) has a normal complement in Gal(E/K).

Theorem

Let L/K be a tame almost classically Galois extension of p-adic fields with Galois closure E/K having group G, and let $H = E[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on L/K. Then \mathfrak{D}_L is a free $\mathfrak{D}_E[N]^G$ -module.

Three theorems (in reverse order)

Theorem

Let L/K be a tame abelian extension of number fields with group G, and let $H = L[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on the extension. Then \mathfrak{D}_L is a locally free $\mathfrak{D}_L[N]^G$ -module.

Sufficient conditions, old and new

• Let L/K be a tamely ramified Galois extension of p-adic fields with group G.

Theorem (PT 2011, 2013)

Suppose at least one of the following conditions is satisfied:

- $p \nmid [L : K]$ and H is commutative;
- The inertia subgroup G_0 acts trivially on N.

Then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.

Theorem

Suppose that N is abelian. The p-part and prime-to-p-part of N are each G-stable. If G_0 acts trivially on the p-part of N, then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.

Induced Hopf-Galois structures

Theorem (Crespo et al. 2016)

Let L/K be a Galois extension of fields with group G and F/K a subextension. Suppose that:

- Gal(L/F) has a normal complement C in G;
- H_T , H_U , with underlying groups T, U, give Hopf-Galois structures on L/F, F/K respectively.

Then there is a Hopf algebra H with underlying group $T \times U$ giving a Hopf-Galois structure on L/K.

- Say that the Hopf-Galois structure on L/K given by H is *Induced* from those on L/F and F/K.
- In this situation, T, U are G-stable subgroups of Perm(G).
- ullet Furthermore, the action of the normal complement C on T is trivial.

Conversely...

Theorem (Crespo et al. 2016)

Suppose that

- H gives a Hopf-Galois structure on L/K;
- the underlying group N is the direct product of two G-stable subgroups T, U;
- $Gal(L/L^T)$ has a normal complement C in G.

Then:

- there are Hopf algebras H_T , H_U , with underlying groups T, U respectively, giving Hopf-Galois structures on L/L^T , L^T/K respectively;
- the Hopf-Galois structure given on L/K by H is induced from these two Hopf-Galois structures.
- ...and so the action of C on T is trivial.

Putting the pieces together

- Let L/K be a tame Galois extension of p-adic fields with group G, and let $H = L[N]^G$ with N abelian.
- Let T be the Sylow p-subgroup of N; write $N = T \times U$ with $p \nmid |U|$.
- If the action of G_0 on T is trivial, then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.
- If $Gal(L/L^T)$ has a normal complement C in G then the Hopf-Galois structure given by H on L/K is induced by Hopf-Galois structures on L/L^T and L^T/K respectively, and the action of C on T is trivial.

So...

If $Gal(L/L^T)$ has a normal complement in G containing G_0 , then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.

Normal *p*-complements for tame Galois extensions

Proposition

Let p^r be the largest power of p that divides |G|, and let F/K be a subextension of L/K such that $[L:F]=p^r$. Then Gal(L/F) has a normal complement in G containing G_0 .

Proof.

- G/G_0 is cyclic, so it has a unique normal subgroup of index p^r .
- So G has a unique normal subgroup C of index p^r , containing G_0 .
- By the Schur-Zassenhaus theorem, C has a complement in G and the complements of C in G are conjugate.
- But any complement of C in G is a Sylow p-subgroup of G, and these are all conjugate.
- So the complements to C in G are precisely the Sylow p-subgroups of G, and Gal(L/F) is one of these.

Towards non-normal extensions: a descent result

Proposition

Let E/K be a Galois extension of p-adic fields with group G and let L/K be a subextension. Let wH_T , H_U give Hopf-Galois structures on E/L, L/K respectively, and let H give the Hopf-Galois structure on E/L induced by these. Suppose that:

- Gal(E/L) has a normal complement in G;
- E/L is at most tamely ramified;
- \mathfrak{D}_E is a free \mathfrak{A}_H -module.

Then \mathfrak{O}_L is a free \mathfrak{A}_{H_U} -module.

Almost classically Galois extensions

Theorem

Let L/K be a tame almost classically Galois extension of p-adic fields with Galois closure E/K and let H_U be a commutative Hopf algebra giving a Hopf-Galois structure on L/K. Then \mathfrak{O}_L is a free \mathfrak{A}_{H_U} -module.

Proof (Sketch).

- Since L/K is tame, E/L is unramified, hence cyclic. By hypothesis, Gal(E/L) has a normal complement in G.
- Induce a Hopf-Galois structure on E/K from the structure given by H_U on L/K and the classical structure on E/L. The corresponding Hopf algebra, say H, is commutative.
- By the Galois version of the theorem, \mathfrak{D}_E is a free \mathfrak{A}_H -module.
- Now by the descent result, \mathfrak{O}_L is a free \mathfrak{A}_{H_U} -module.

• Thank you for your attention.