Commutative Hopf-Galois Module Structure of Tame Extensions Paul Truman Keele University, UK 26th of May, 2016 # Why study nonclassical HGMS of tame extensions? - "Better" descriptions of rings of integers in tame Galois extensions of global fields: Martinet's tame quaternionic extensions of \mathbb{Q} . - Descriptions of rings of integers in separable, but non-normal, tame extensions (local or global). - Uniformity: No known example of a tame H-Galois separable extension L/K of local fields for which \mathfrak{O}_L is not free over \mathfrak{A}_H . - Obvious candidate for the associated order: if $H = E[N]^G$ then $\mathfrak{O}_E[N]^G \subseteq \mathfrak{A}_H$, and there are many examples of equality. # Three theorems (in reverse order) #### **Theorem** Let L/K be a tame Galois extension of p-adic fields with group G, and let $H = L[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on the extension. Then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module. # Three theorems (in reverse order) • Recall that a separable extension L/K with Galois closure E/K is called Almost classically Galois if Gal(E/L) has a normal complement in Gal(E/K). #### **Theorem** Let L/K be a tame almost classically Galois extension of p-adic fields with Galois closure E/K having group G, and let $H = E[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on L/K. Then \mathfrak{D}_L is a free $\mathfrak{D}_E[N]^G$ -module. # Three theorems (in reverse order) #### **Theorem** Let L/K be a tame abelian extension of number fields with group G, and let $H = L[N]^G$ be a commutative Hopf algebra giving a Hopf-Galois structure on the extension. Then \mathfrak{D}_L is a locally free $\mathfrak{D}_L[N]^G$ -module. ## Sufficient conditions, old and new • Let L/K be a tamely ramified Galois extension of p-adic fields with group G. ## Theorem (PT 2011, 2013) Suppose at least one of the following conditions is satisfied: - $p \nmid [L : K]$ and H is commutative; - The inertia subgroup G_0 acts trivially on N. Then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module. #### **Theorem** Suppose that N is abelian. The p-part and prime-to-p-part of N are each G-stable. If G_0 acts trivially on the p-part of N, then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module. # Induced Hopf-Galois structures ## Theorem (Crespo et al. 2016) Let L/K be a Galois extension of fields with group G and F/K a subextension. Suppose that: - Gal(L/F) has a normal complement C in G; - H_T , H_U , with underlying groups T, U, give Hopf-Galois structures on L/F, F/K respectively. Then there is a Hopf algebra H with underlying group $T \times U$ giving a Hopf-Galois structure on L/K. - Say that the Hopf-Galois structure on L/K given by H is *Induced* from those on L/F and F/K. - In this situation, T, U are G-stable subgroups of Perm(G). - ullet Furthermore, the action of the normal complement C on T is trivial. # Conversely... ## Theorem (Crespo et al. 2016) #### Suppose that - H gives a Hopf-Galois structure on L/K; - the underlying group N is the direct product of two G-stable subgroups T, U; - $Gal(L/L^T)$ has a normal complement C in G. #### Then: - there are Hopf algebras H_T , H_U , with underlying groups T, U respectively, giving Hopf-Galois structures on L/L^T , L^T/K respectively; - the Hopf-Galois structure given on L/K by H is induced from these two Hopf-Galois structures. - ...and so the action of C on T is trivial. # Putting the pieces together - Let L/K be a tame Galois extension of p-adic fields with group G, and let $H = L[N]^G$ with N abelian. - Let T be the Sylow p-subgroup of N; write $N = T \times U$ with $p \nmid |U|$. - If the action of G_0 on T is trivial, then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module. - If $Gal(L/L^T)$ has a normal complement C in G then the Hopf-Galois structure given by H on L/K is induced by Hopf-Galois structures on L/L^T and L^T/K respectively, and the action of C on T is trivial. #### So... If $Gal(L/L^T)$ has a normal complement in G containing G_0 , then \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module. # Normal *p*-complements for tame Galois extensions ### Proposition Let p^r be the largest power of p that divides |G|, and let F/K be a subextension of L/K such that $[L:F]=p^r$. Then Gal(L/F) has a normal complement in G containing G_0 . #### Proof. - G/G_0 is cyclic, so it has a unique normal subgroup of index p^r . - So G has a unique normal subgroup C of index p^r , containing G_0 . - By the Schur-Zassenhaus theorem, C has a complement in G and the complements of C in G are conjugate. - But any complement of C in G is a Sylow p-subgroup of G, and these are all conjugate. - So the complements to C in G are precisely the Sylow p-subgroups of G, and Gal(L/F) is one of these. #### Towards non-normal extensions: a descent result #### Proposition Let E/K be a Galois extension of p-adic fields with group G and let L/K be a subextension. Let wH_T , H_U give Hopf-Galois structures on E/L, L/K respectively, and let H give the Hopf-Galois structure on E/L induced by these. Suppose that: - Gal(E/L) has a normal complement in G; - E/L is at most tamely ramified; - \mathfrak{D}_E is a free \mathfrak{A}_H -module. Then \mathfrak{O}_L is a free \mathfrak{A}_{H_U} -module. # Almost classically Galois extensions #### **Theorem** Let L/K be a tame almost classically Galois extension of p-adic fields with Galois closure E/K and let H_U be a commutative Hopf algebra giving a Hopf-Galois structure on L/K. Then \mathfrak{O}_L is a free \mathfrak{A}_{H_U} -module. ## Proof (Sketch). - Since L/K is tame, E/L is unramified, hence cyclic. By hypothesis, Gal(E/L) has a normal complement in G. - Induce a Hopf-Galois structure on E/K from the structure given by H_U on L/K and the classical structure on E/L. The corresponding Hopf algebra, say H, is commutative. - By the Galois version of the theorem, \mathfrak{D}_E is a free \mathfrak{A}_H -module. - Now by the descent result, \mathfrak{O}_L is a free \mathfrak{A}_{H_U} -module. • Thank you for your attention.